(x^2)=(156)

Simple and best practice solution for (x^2)=(156) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)=(156) equation:



(x^2)=(156)
We move all terms to the left:
(x^2)-((156))=0
determiningTheFunctionDomain x^2-156=0
a = 1; b = 0; c = -156;
Δ = b2-4ac
Δ = 02-4·1·(-156)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{39}}{2*1}=\frac{0-4\sqrt{39}}{2} =-\frac{4\sqrt{39}}{2} =-2\sqrt{39} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{39}}{2*1}=\frac{0+4\sqrt{39}}{2} =\frac{4\sqrt{39}}{2} =2\sqrt{39} $

See similar equations:

| -11-6k=-7k | | f+6=51 | | 54=9x/5+32 | | 2x+3(x-1)=4(2x-5) | | 29=x+3 | | -32=x.2 | | 2x+x+20=119 | | 7k-3k=3(k-1) | | w−15=–2 | | -1/2x-(1/2x+4)+12=17x-6+(3x+5/6) | | (5x+62)-(3x+47)=37 | | 10+6x-3=6x+7 | | 4(p–7)=20 | | (k-4)²=-3 | | (4y+7)=128 | | y=45-(92+7) | | 2x+x+20+119=180 | | q—17=18 | | (5x+62)+(3x+47)=37 | | -3/8x-5/24x+1/3x=-30 | | 7x-2x+7= | | 25x+45x=57+1 | | -600=24p | | 8x-(9-12x)=+5 | | x+3/10=16 | | 75x−50=25x−70 | | 2x+5+6-8x= | | (0×n)×7=0×(6×7) | | 1.5y=1 | | 6x-1x+4= | | 3-(x+2)=4+5x | | -11/2x=-24 |

Equations solver categories